RING OPENINGS OF 3-ARYLTETRAZOLOPYRIDINIUM SALTS WITH NUCLEOPHILES: SYNTHESIS OF 1-(2-ARYL-5-TETRAZOLYL)-BUTADIENES, DIENE ETHERS AND DIENAMINES

A. Gelléri and A. Messmer Central Research Institute for Chemistry of the Hungarian Academy of Sciences, Budapest (Received in UK 26 July 1973; accepted for publication 21 September 1973)

3-Aryltetrazolopyridinium salts $(\underline{1})$ prepared¹ by cyclodehydrogenation of l-(\propto -pyridyl)-3-arlytriazenes ($\underline{2}$) react with aqueous sodium dithionite <u>via</u> opening of the tetrazole ring to afford the starting material ($\underline{2}$) in nearly quantitative yield. We have found that with simple nucleophiles (sodium borohydride, morpholine, sodium methoxide) the pyridine instead of the tetrazole ring of $\underline{1}$ is cleaved, even under mild conditions, yielding butadiene derivatives that can be isolated in crystalline form.

3-Aryltetrazolopyridinium salts (1) with sodium borohydride in aqueous solution at room temperature (in DMF already at $0^{\circ}C$) give 1-cis-1-(2-aryl-5-tetrazolyl)-1.3-butadienes in good yields; e.g. <math>4a, where $Ar=p-CH_3O-C_6H_4$ and R = H (m.p. $96^{\circ}C$), is obtained in 63 %. Further derivatives (4b-f) are listed in Table 1. In order to prove that the tetrazole ring in 3-aryl-3,5-

dihydropyridotetrazole ($\underline{2}$), formed as an intermediate <u>via</u> hydride attack, is subsequently rearomatized by the electrocyclic opening of its pyridine ring to give actually the <u>cis</u>-butadiene derivative, we have compared the NMR and UV spectra of the methyl derivatives of $\underline{4}$.

	2			1			<u>4</u> ≞				
	R	M.p., oc	Yield %	R	м.р., °С	Yield %	R	M.p., 7 °C	ïield %	υν (95 % _{λm} (1	EtOH) oge)
	Н	196	74	Н	307	87	Н	65	74	283(4.25)	253(4.31)
	3-0H ₃	167	57	8-CH ₃	242	76	1-CH ₃	96	68	285(sh)	262(4.52)
	4-CH ₃	209	64	7-CH2	294	81	2-CH3	125	80	286(4.36)	255(4.38)
	5-CH ₃	212	60	6-CH ₃	250	78	3-CH ₃	41	34	290(4.11)	263(4.42)
	6-CH3	154	46	5-CH3	3 03	61	4-CH3	108 [×]	50	288(4.22)	264(4.42)

$$FABLE 1 \quad (Ar = \underline{p} - C1 - C_6 H_{\mu})$$

XM.p. is not sharp (102-8°C); the product is a mixture consisting of the l-<u>cis</u>-3-<u>trans</u> and l-<u>cis</u>-3-<u>cis</u> isomers.

The l-(\propto -picolyl)-3-(4-chlorophenyl)triazenes ($\underline{2}\underline{c}-\underline{f}$) have been prepared from the four 2-aminopicolines with 4-chlorophenyldiazonium chloride. Their cyclodehydrogenation gave the corresponding tetrazolopyridinium salts ($\underline{1}\underline{c}-\underline{f}$), which were reduced with sodium borohydride to the methylbutadiene derivatives ($\underline{4}\underline{c}-\underline{f}$).

The open-chain butadiene structure is proved by the characteristic parameters of the vinyl group: in $\underline{4e} \ \delta H_4 = 5.44$ ppm and δH_4 , = 5.54 ppm (C_6D_6 ; $\underline{J}_{4,4}$, = 1.9 Hz) and in $\underline{4d} \ \delta H_3 = 7.83$ ppm (C_6D_6). The coupling constants of the ABX system of $\underline{4d}$ calculated from these data are $\underline{J}_{3,4} = 9.6$ Hz and $\underline{J}_{3,4}$, = 17.8 Hz; the parameters reproduce the spectrum of $\underline{4d}$ very well. Finally, the <u>cis</u> structure of the dienes is proved by the fact that the coupling constants of H_1 and H_2 in $\underline{4e}$ have the value of $\underline{J} = 10.2$ Hz expected for the <u>cis</u> position. As the UV spectra of the remaining derivatives of $\underline{4}$ are analogous to that of $\underline{4d}$ (<u>cf</u>. Table 1), the generalization of the <u>cis</u> structure is justified.

In the presence of secondary amines, e.g. morpholine (in methanol, at $O^{\circ}C$), it is again the pyridine ring of the salts $\underline{1}$ which is cleaved, whereas the tetrazole cycle remains intact. The product of these reactions, however, are not the <u>cis</u> but the l-<u>trans-3-trans</u>-l-(2-aryl-5-tetrazolyl)-4-morpholinc 1,3-butadienes (5). Compounds 5<u>a</u>-<u>c</u> have a strong IR band at about 1620 cm⁻¹, characteristic of dienamines²; their UV spectra (Table 2) are different from those of <u>cis</u>-dienes (<u>4</u>); they give dinitrophenylhydrazones (<u>6a</u>-<u>c</u>) in good yield and undergo diene reaction with N-phenylmaleimide. It should be noted that, with the exception of <u>4c</u>, <u>cis</u> compounds of the type <u>4</u> do not form Diels-Alder adducts even under drastic conditions.

	4.5			ē			
AI.		₩.p., c	Yield, %	υν (95 λ _m (1	M.p.	Yield, %	
a	4-CH30-C6H4	128	53	355 (4.75)	247 (4.11)	186	80
₽	4-C1-C6H4	161	61	327 (4.57)	262 (4.27)	202	54
⊆	с ₆ н ₅	136	56	333 (4.66)	247 (4.11)	198	70

TABLE 2

The reaction of salt <u>lb</u> with sodium methoxide (in methanol, at 0° C) yields two diene derivatives, <u>viz</u>. l-<u>cis</u>-3-<u>trans</u>-l-[2-(<u>p</u>-chlorophenyl)-5tetrazolyl]-4-methoxy-l,3-butadiene (<u>7</u>; M.p. 162°C; 29 %) and l-<u>cis</u>-3-<u>cis</u>l-[2-(<u>p</u>-chlorophenyl)-5-tetrazolyl]-4-methoxy-l,3-butadiene (<u>8</u>; M.p. 116°C; 23 %). With dinitrophenylhydrazine, these diene ethers give the same phenylhydrazone as dienamine <u>5</u><u>b</u>, and their UV spectra are analogous to those of the l-<u>cis</u>-dienes (<u>4</u>).

The remarkably strong tendency at low temperature of 3-aryltetrazolopyridinium salts $(\underline{1})$ to ring opening with nucleophiles is presumably due to the positive charge of $\underline{1}$ and to the aromatic tetrazole structure of the products. This receives support from a comparison with known ring opening reactions of other fused ring systems. Some nitro and cyano derivatives of the neutral tetrazolopyridine have been found³ by the NMR method to undergo ring cleavage with alkali to give sodium tetrazolyldienolates; however, yields were not reported. The reaction with NaBH₄ of guinolizinium salts gave unsaturated quinolizidines, and the product of ring opening /pyridylbutadiene/ was isolated only in low yield even under drastic conditions⁴. Isoxazolopyridinium salts⁵ afford isoxazolinyldienamines, but this requires boiling with piperidine on a steam bath. Recently, quinolizinium salts⁶ have been reported to give dienamines in good yields but also under more drastic conditions, viz. boiling with morpholine.

Finally, the ambident reductive ring opening of 3-aryltetrazolopyridin. um salts ($\underline{1}$), leading in the presence of $Na_2S_2O_4$ to $\underline{2}$ and with $NaBH_4$ to $\underline{4}$. may be of interest as a new type of "charge- and orbital-controlled" reactions⁷.

Acknowledgement: We thank Dr.L.Radics for the analysis of NMR spectra and for his valuable comments.

REFERENCES

- A.Messmer and A.Gelléri, Angew. Chem. <u>77</u>, 171 (1965); Angew. Chem. int. Edit. <u>4</u>, 154 (1965).
- 2. G.Opitz and W.Merz, Liebigs Ann. Chem. 652, 139 (1959).
- Ja. B.Stanovnik and M.Tisler, Chimia <u>22</u>, 141 (1968); b. M.Tisler, Synthesis <u>1973</u>, 123; c. A.Pollak, S.Polanc, B.Stanovnik and M.Tisler, Monatsh. Chemie <u>103</u>, 1591 (1972).
- 4. T.Niyadera and Y.Kishida, Tetrahedron Letters 1965, 905.
- 5. R.Eisenthal, A.R.Katritzky and E.Lunt, Tetrahedron 23, 2775 (1967).
- 6. D.Mörler and F.Kröhnke, Liebigs Ann. Chem. 944, 65 (1971).
- 7. R.F.Hudson, Angew. Chem. int. Edit. 12, 54 (1973).